
Driving Value

PLCopen Basics with

MPiec Controllers

Class No. TRM010-PLCopen-Basic

Doc No. eLV.Mpiec.01.PLCopenBasic

Rev A.00

Date: February 24, 2015

TRM010-MPiecSig5-AppProg | Rev 1.00| Date: 3/4/2013 | © 2013 Yaskawa America, Inc. All rights reserved.

Driving Value

Remote Demo Connection

Connection Concept

Secomea

Login

Connect to MPiec controller

Connect to IP camera

Demo Overview

Tips

3

• Site Manager

• Gate Manager

• Link Manager

 Application on your PC

• Remote Connection

 Login credentials

 Electronic certificate

Connection ConceptRemote Demo Connection

4

• More Information at www.secomea.com

Remote Demo Connection

5

• Contact Yaskawa

 training@Yaskawa.com

 www.Yaskawa.com Request Training

• Receive email

• Install Link Manager software

• First-time Login

 Start Link Manager

 Certificate

 Password

Process Summary

• Test Mpiec connection

 Internet Explorer browser

• Test IP Camera connection

 Port 88

 Plugin installation

» Internet Explorer 11

» FireFox

» Chrome

» Opera

Remote Demo Connection

mailto:training@Yaskawa.com
http://www.yaskawa.com/

6

Contact YaskawaRemote Demo Connection

7

Receive eMailRemote Demo Connection

8

Install Link Manager SoftwareRemote Demo Connection

9

• Start Link Manager

First Time LoginRemote Demo Connection

10

• Certificate

First Time LoginRemote Demo Connection

11

• Password

First Time LoginRemote Demo Connection

12

First Time LoginRemote Demo Connection

13

Test MPiec ConnectionRemote Demo Connection

14

• Port 88

Test IP Camera ConnectionRemote Demo Connection

15

• Plugin – ie 11

Test IP Camera ConnectionRemote Demo Connection

16

• Plugin – Firefox

Test IP Camera ConnectionRemote Demo Connection

17

• Plugin – Chrome

Test IP Camera ConnectionRemote Demo Connection

18

• Plugin – Opera

Test IP Camera ConnectionRemote Demo Connection

19

Test IP Camera ConnectionRemote Demo Connection

Driving Value

Class Project Template

Purpose

Save the Hardware Configuration

Hardware Configuration Summary

Project Overview

Run Project

Toggle Boolean Interface

21

• Starting Point for PLCopen training

• Hardware Configuration knowledge not

required

 You will learn some basics anyway

• Provide an input interface

 IP camera can’t turn on the switches!

PurposeClass Project Template

22

• Secomea connected

 MPiec web page in i.e.

 IP camera in Opera

• Class project file *.zwt downloaded

from description page

 PLCopen2300sPro2 RevX

 PLCopen2300sPro3 RevX

 PLCopen2600Pro2 RevX

 PLCopen2600Pro3 RevX

• MotionWorks IEC Pro installed

 Prefer Version 3.x

 Version 2.x very similar

Requirements

23

• Hardware Configuration

 On the Yaskawa toolbar – Move the

toolbar

• Save Project Hardware Configuration to

Controller

 IP address, Connect HC to controller

 Use Offline Configuration

 SAVE online

 Reboot controller

Save Hardware ConfigurationClass Project Template

24

• Hardware Configuration Summary:

Near Default

 Made from default controller with

default servos

 Encoders set for incremental mode

 Axes

» Screw, 360mm/rev

» Rotary, 360 deg/rev, 360 mach cycle

» External, pulses

 OT disabled

Configuration SummaryClass Project Template

25

• Tour the Class Template Project

 Based on File-New templates

 Libraries
» One library is used exclusively for data types

 DataTypes
» No local datatypes

 Logical POUs
» Toggle function block

» HMI with TB inputs to Global variables for
your use

 Tasks
» Template tasks

 Global_Variables
» Servo axis

» L-IO

» Created by Hardware Configuration

Project OverviewClass Project Template

26

• MotionWorks IEC-Pro Version 3

 Add Download changes button

» Extras – Options – Commands – Compile/Debug

» Drag to toolbar

Software ConfigurationClass Project Template

27

• Make

• Download

• Coldstart

Run ProjectClass Project Template

28

• Debug Mode

• Open Worksheet

• Toggle Boolean

 Setting is lost when worksheet is

closed

Toggle Boolean InterfaceClass Project Template

Driving Value

PLCopen Overview

Initiatives

Summary

Motion State Diagram

General Rules

Initial Value

Done Output

30

PLCopen IntiativesPLCopen Overview

31

• Defines libraries of Function Blocks

 Motion control specification

• YASKAWA MotionWorks IEC

 Complies with PLCopen

 Proprietary internal algorithms

TC2 – Motion ControlPLCopen Overview

32

• MPiec Controllers

 MP2300Siec – 20-Axis, I/O slot x1

 MP2310iec – 20-Axis, I/O slot x3

 MP2600iec – 1-Axis, Multi-function I/O

 MP3200iec – 62-Axis, Mechatrolink III

 MP3300iec – 16-Axis, Mechatrolink III

MPiec Controllers

PLCopen programming is

identical in each of the

MPiec controllers.

PLCopen Overview

33

PLCopen Summary

• Firmware Level Operation

 Synchronized with Mechatrolink

• MC_
 Defined by PLCopen

• Y_
 Yaskawa Specific

Block
Execution at
Firmware Level

PLCopen Overview

34

• Motion States

 Synchronized Motion

 Discrete Motion

 Continuous Motion

 Stopping

 ErrorStop

 Homing

 Standstill

 Disabled

• PLCopen describes which blocks

have priority and which state is

active

Motion State DiagramPLCopen Overview

35

Documentation

• PLCopen 2.4.1 specification

 Basic and important rules for how the

motion control function blocks work

• Use the following pages as reference

 PDF available

“tf_mc_part1_version10.pdf”

 Download most recent versions at

www.plcopen.org

PLCopen Overview

36

General Rules Summary

Output status The Done, InGear, InSync, InVelocity, Error, ErrorID and CommandAborted outputs are reset

with the falling edge of execute. In must be guaranteed that they are set for at least one cycle if

the corresponding situation occurs, even if execute was reset before.

Done and Error outputs are mutually exclusive (cannot be true at the same time). If an instance of a

FB receives a new execute before it finished (as a series of commands on the same instance), the FB

won’t return any feedback, like ‘Done’ or ‘CommandAborted’, for the previous action.

Input parameters The parameters are used with the rising edge of the execute input. To modify any parameter it is

necessary to put the correct set of values and to trigger the motion again

Missing input

parameters

According to IEC 61131-3, if any parameter of a function block input is missing (“open”) then

the value from the previous invocation of this instance will be used. In the first invocation the

initial value is applied.

Position versus

distance

“Position” is a value defined within a coordinate system. “Distance” is a relative measure related

to technical units . “Distance” is the difference between two positions.

Sign rules The Velocity, Acceleration, Deceleration and Jerk are always positive values. Position and

Distance can be both positive and negative

All blocks have two outputs which are dealing with errors that can occur while executing a

Function Block. These outputs are defined as follow:

Error Rising edge of Error informs that an error occurred during the execution of

 the Function Block.

ErrorID Error number

Done, InVelocity, InGear, and InSync mean successful completion so these signals are logically

exclusive to Error.

Types of errors:

• Function blocks (e.g. parameters outside range, state machine)

• Communication

• Drive

Instance errors are not always resulting in an axis error (bringing the axis to standstill)

FB Naming In case of multiple libraries within one system (to support multiple drive / motion control systems), the

FB naming may be changed to “ MC_FBname_SupplierID".

Behavior of Done

output

The Done output (as well as InGear, InSync, ..) is set when the commanded action has been

completed successfully.

With multiple Function Blocks working on the same axis in a sequence, the following applies:

when one movement on an axis is interrupted with another movement on the same axis without

having reached the final goal, Done of the first FB will not be set.

Behavior of

CommandAborted

output

CommandAborted is set, when a commanded motion is interrupted by another motion command

or MC_Stop.

The reset-behavior of CommandAborted is like Done. When CommandAborted occurs, the

other output-signals like InVelocity are reset.

Error Handling

Behavior

PLCopen Overview

37

• Examples of PLCopen Specification

 Read inputs at rising edge only

 Done exclusive of Error

 Positive Velocity, Acceleration, Deceleration

 Default input values

General Rules Summary

> 0

Done & Error

never on at the

same time

PLCopen Overview

38

• Right-Click any block for help

 The “Default” column is the initial value that will be used by the function block input if

nothing is connected

Initial Value (Default)PLCopen Overview

39

• Done bit turns on

 At least 1 scan

 At command completion

• Done ≠ Position Complete

 AXn_PSET (global variable)

» /COIN

» Pn522

DONE Output

Execute

Done

Execute

Done

<answer><answer>

PLCopen Overview

Driving Value

Axis_Ref

Usage and Purpose

Definition

Axis Name and Number

Initialize Axis Variable

41

• Axis

 Data type AXIS_REF

 Data Structure

 Allows for vendor-specific data to be

combined into one variable

 VAR_IN_OUT

» Input function

» Data not copied in memory

 Required by all PLCopen function

blocks

Usage and PurposeAxis_Ref

42

AXIS_REF
Element Data Type

Axis Number UINT

Max Speed LREAL

Encoder Resolution DINT

Usage and Purpose

• Structure

 Many data elements in one variable

LeftMotor
Element Data Type Data

Axis Number UINT 1

Max Speed LREAL 6000

Encoder Resolution DINT 8192

(Not Yaskawa) Posible Definition of the

AXIS_REF derived data type

Variable named LeftMotor

of data type AXIS_REF

Axis_Ref

43

AXIS_REF is defined under Data Types in DataTypes_Toolbox

One Element In the Structure

 More elements may be added by Yaskawa in the future

Definition

AXIS_REF
Element Data Type

AxisNum UINT

What is the data type of

the AxisNum element?

Axis_Ref

44

• Logical Axis Number

 Hardware Configuration

 Axis Parameter #1831

 NOT network node number

Axis Name & Number

• Axis Name

 Can be changed

 Used to create axis ref variable

Axis variable is

automatically created by

Hardware Configuration

Axis_Ref

45

• View – Initialize Multi-Element Variable Window

 Enter the logical axis number

Initialize Axis Variables

Type the initial value of the structure element

in this window

Axis_Ref

46

• MotionWorks IEC 2

 Manually create axis variables (with Axis_Ref datatype)

 Initialize axis variables in ST program

 Refer to Quick Start Videos

Text Initialization

LeftMotor.AxisNum:=UINT#1;
LeftMotor
Element Data Type Data

AxisNum UINT 1

This text command loads the unsigned integer “1” into the

AxisNum element of variable LeftMotor

Initialize (ST)

Axis_Ref

47

• Confirm Operation

 Add each axis to the Watch Window

 Set initial value

 Warm Start vs Cold Start

ConfirmationAxis_Ref

MP2600iec: Rotary axis is also a virtual axis, AxisNum = 27

Driving Value

Servo Enable

Program Map

Enable POU

MC_Power

Help

Troubleshooting

49

• HMI_I

 Part of class project

Program Map

Reset(LD)HMI_I (LD) slow Enable(LD) slow

Positioning (LD) fast Stop (LD) slow

Servo Enable

50

• Create Enable POU

 POU Type: Program

 Language: LD

 Run in the Slow task

• Add MC_Power

 Axis

 Enable

Enable ProgramServo Enable

51

• Shortcut Button

 Extras – Options - Commands

Download ChangesServo Enable

52

• Use Debug Mode

 Program and test Screw

 Program and test RightMotor

• MC_Power.Status

 Status of the command

 Updates at the application scan rate

MC_PowerServo Enable

53

• ErrorID Output

 Right-click for help

Troubleshooting

See HELP

Servo Enable

54

• Confirm

 Screw

 Rotary

 Virtual

Enable All AxesServo Enable

Driving Value

Positioning

MC_MoveRelative

MC_MoveAbsolute

Timers

Move Sequence

56

Create Positioning (program POU)

 What task is most appropriate? (Fast, Med, Slow)

Refer to Quick Start Video

Positioning ProgramPositioning

HMI_I (LD) slow Enable(LD) slow

Positioning (LD) fast

57

Screw Move Profile

Input Initial Value Unit Note

Distance -270.0 mm Use Variable

Velocity 180.0 mm/sec Use Variable

Accel 360000.0 mm/sec² Use Literal LREAL#360_000.0

Decel 360000.0 mm/sec² Use Literal LREAL#360_000.0

MC_MoveRelative

• Positioning (program POU)

 MC_MoveRelative Function Block

Warm Start required if initial value is changed.

Positioning

58

• Quick Zero Set (optional)

 Repeat relative moves until at mechanical zero

 Use MC_SetPosition

 Repeat for Rotary

Set Zero Position

Change distance by trial and error.

Re execute until arrow on motor

wheel is pointing up

Positioning

59

• Add MC_MoveAbsolute

 Create a move sequence

MC_MoveAbsolute

Relative

Absolute

LeftMotor Move Profile

Input Initial Value Unit Note

Position 0.0 mm Use Variable

Velocity 180.0 mm/sec Use Variable

Accel 360000.0 mm/sec² Use Literal LREAL#360_000.0

Decel 360000.0 mm/sec² Use Literal LREAL#360_000.0

Positioning

60

 Partial Solution

MC_MoveAbsolute

Jerk, Direction, BufferMode can be

disconnected and default values are used.

•Jerk exists as a parameter in HWConfig

“Moving Average Filter” #1300, #1301

•BufferMode and Direction are “Enumerated

Data Types” (more information later)

Relative

Absolute

Positioning

61

• Repeating Sequence

Timers Between Moves

Timers count how long

the IN input is true

Use a N.C. contact to

repeat

Positioning

62

• Adjust the program to operate as follows

 Screw moves, wait 500ms

 Rotary moves, wait 500ms

 Screw returns, wait 500ms

 Rotary returns, wait 500ms

 Repeat sequence

Move Sequence

500 ms 500 ms

500 ms 500 ms

Screw

Rotary

Relative

Relative

Absolute

Absolute

Positioning

63

• Solution Concept

Move Sequence

Driving Value

Stop & Alarm

MC_Stop

MC_Reset

MC_ReadAxisError

Alarm Code Diagnosis

Task Execution Adjustment

65

• Create Program POU “Stop”

 Instance: SlowTsk

STOP ProgramStop & Alarm

HMI_I (LD) slow Enable(LD) slow

Positioning (LD) fast Stop (LD) slow

66

“Stop” Program POU

“HMI_I” Program POU

• Partial Solution

MC_StopStop & Alarm

67

• Create Program POU “Reset”

 Instance: SlowTsk

RESET Program

Reset(LD)HMI (LD) slow Enable(LD) slow

Positioning (LD) fast Stop (LD) slow

Stop & Alarm

68

• Partial Solution

MC_Reset, MC_ReadAxisError

“HMI_I” Program POU

Stop & Alarm

69

• Axis Error ID (Hex)

• Error Class (Hex)

Yaskawa Alarm Code

Produce Alarm

Speed = 40_000.0

Distance = 40_000.0

Open any

variable in

DEBUG mode

Stop & Alarm

70

• Alarm

 Motion cannot continue under current

conditions

 Disable Servo

» Alarm Stop Mode

 Display Code A. □ □ □

 Examples

» A.400 Overvoltage

» A.510 Overspeed

» A.710 Overload: High Load

» A.860 Encoder Overheat

Yaskawa Alarm Diagnosis

• Warning

 Future alarm under current conditions

 Servo remains enabled

 Display Code A. 9 □ □

 Examples

» A.900 Position Error Overflow

» A.910 Overload

» A.95A Command Warning

» A.971 Undervoltage

Stop & Alarm

Servo

User

Manual

71

• Adjust POU order in task, top to bottom

 Logical sequence

• I/O Module Task Assignment

 Assign to same task as application code that uses the %I %Q

 Use Hardware Configuration

Task Execution Adjustment

Human operation

of physical inputs

Global variable

executes MC_Stop

Global variables

written by HMI

When inputs are controlled by the machine (not

human operation), then use FastTsk to stop.

Inputs read by

assigned task

Stop & Alarm

Driving Value

Enumerated Data Types

Definition

Data Types Folder

MC_Direction

Enumerated Types as Literal and Variable

MC_Direction for Rotary Axis

MC_BufferMode to Create Blended Moves

73

Definition

• What is an enumerated data type?

 A NAME for a NUMBER

 Code reads easily

 Reduced mistakes

Enumerated Data Types

74

DataTypes Toolbox

 “Data Types” folder

 “MotionBlock Types”

 Other Enumerated types exist

Data Types FolderEnumerated Data Types

75

MC_Direction does not apply to

• Relative Moves (MC_MoveRelative)

• Linear Loads

MC_MoveVelocity uses only positive_direction and

negative_direction. Other values are ignored.

0 positive_direction In a rotary application, forces the axis to move in a positive direction.

1 shortest_way For use in applications where the Load Type is configured as a rotary or modularized axis.

2 negative_direction In a rotary application, forces the axis to move in a negative direction

3 current_direction

For use in applications where the Load Type is configured as a rotary or modularized axis. Only

applies if an existing move is in progress and another function block such as MC_MoveAbsolute

or MC_MoveRelative is executed. Once the axis is at StandStill, using

MC_Direction_CurrentDirection will default to the positive direction

MC_Direction#

• MC_Direction
 Absolute Positioning of Rotary Loads

 Four possible “directions”

 Example: Rotary Table

 Position 0 = Position 360

MC_Direction

0|360

180

How to

get to

180?

Enumerated Data Types

76

• Programming with Enumerated Data Types

 As Literal Value

» MC_BufferMode#Aborting

» MC_Direction#Shortest_Way

As Literal

Literal

Compare:

UINT#1

LREAL#1.0

MC_Direction#Shortest_Way

Format:

<DataType>#<data>

Enumerated Data Types

77

• Correct Spelling of Enumerated Data Type

 Function Block Help

 Copy and paste

Spelling

Copy

Paste

Help

Enumerated Data Types

78

• Online Hardware Configuration (Rotary)
 Rotary

 Degrees

 Online Save

 Reboot

• Application Program (Positioning)
 Connect a literal at direction input

• Observe Result

Use MC_Direction in ProgramEnumerated Data Types

79

• Programming with Enumerated

Data Types

 Variable

» Set value in application code

 Not Supported:

» Data Type detection

» Debug display

» Initial value

As Variable

Enter variable name

MC_Direction data type not shown

Open existing variable

MC_Direction data type available

Value loaded to variable within application code

Enumerated Data Types

80

• MC_BufferMode

 Move 2 waits for Move 1 to complete

 Create “blended moves”

 Use for registration applications

MC_BufferModeEnumerated Data Types

81

• Edit Positioning POU

Blended MoveEnumerated Data Types

82

• Use Logic Analyzer

 Try different buffer modes

Logic AnalyzerEnumerated Data Types

Driving Value

Yaskawa “Toolbox” User

Libraries

Toolbox Concept

PLCopen Toolbox

Toolbox Installer

Dependent Libraries

Insert Additional Toolbox

84

• Right Click Help

 When Toolbox is installed

 Links to eLearning Videos and recorded

webinars

PLCopen Toolbox

Help

Yaskawa “Toolbox” User Libraries

85

• Insert Another Project

 Library = any project

 *.mwt (or *.mwe)

• Library Data Imported

 User FU & FB POUs

 Program POUs

 Data Types

 NOT global variables!

 NOT dependent libraries!

• Organization

 Specific projects for library use

 Revision number in project name

 Prefix (ex: YTTS_)

Library Concept ReviewYaskawa “Toolbox” User Libraries

86

• Yaskawa Tech Note: TN.MCD.08.130

Toolbox ConceptYaskawa “Toolbox” User Libraries

87

• Yaskawa.com/iectb

Toolbox Installer

Installer unzips all yaskawa

“Toolbox” user libraries to the

Libraries Folder and activates

Right-Click Help

Yaskawa “Toolbox” User Libraries

88

• Refer to Quick Reference Guide

 Steps 1 & 2 completed by Toolbox installer

PLCopen Toolbox

Refer to the Quick Reference Guide

Yaskawa “Toolbox” User Libraries

89

• Open CamToolbox Library Project

• Dependent Libraries

 PLCopen Plus

 Ymotion

 DataTypes_Toolbox

 Math_Toolbox

Dependent Libraries

• Note the Libraries used by the Toolbox

 Note the order top to bottom –

increasing complexity and dependence

Dependent libraries in your project

must appear in the same order, above

the PLCopen Toolbox library

Yaskawa “Toolbox” User Libraries

90

• Add Cam Toolbox and dependent libraries to your project

 Must appear in order of dependency from top to bottom

Insert Libraries

R-click insert on Libraries Folder:

Library inserted at the bottom

R-click insert on existing Library:

Library inserted above

Click and drag to re-order (NEW

in Version 3)

Yaskawa “Toolbox” User Libraries

91

• Run new installer

 Yaskawa.com/iecTB

• Insert new versions

 in same order

• Remove old versions

• Make

• Alternate

 Newest version may be available
individually (not part of installer)

 Download ZWT, extract and insert
» See Quick Reference Guide

 Help will be disabled for that library
» Manual process to move help file to new

directory

Updating ToolboxesYaskawa “Toolbox” User Libraries

Before Starting Project

– Please update to the most recent

Toolbox user libraries

During Project Development

– You may wish to update certain

Toolbox user libraries in order to use

new features

After Project Development

– Toolbox update is not recommended

Driving Value

PLCopen Toolbox

Programming Introduction

Class Project #2

AxisStruct datatype

AxisControl function block

Jog function block

ReadAxisParameters function block

93

• Program Map for Second Project
 Using PLCopen Toolbox

Class Project #2

HMI_I (LD) Control(LD)

Positioning (LD)

Monitor (LD)

Stop (LD)

Home (LD)

Gear (LD)

Manual (LD)

PLCopen Toolbox Programming Introduction

94

• Back Up Existing Project

• Use the Class Project Template to create a new project

 File-Unzip PLCopen*.zwt to new project name

 Adjust IP address

 Same Hardware Configuration – no update required

 Open original project in another instance of MotionWorks IEC

 Copy/Paste Logical POUs

» Positioning

» Stop

 Insert Program Instances

» Positioning

» Stop

Class Project #2PLCopen Toolbox Programming Introduction

95

• Global Variables: Change AxisRef to “AxisStruct” data type

 AxisStruct comes from PLCopen Toolbox user library

AxisStruct Data Type

Initialize the

Axis_Ref element

PLCopen Toolbox Programming Introduction

96

• Update Axis Var_In_Out of copied code

AxisStruct Data Type

Notice the “.Ref”

PLCopen Toolbox Programming Introduction

97

• Create the Control POU
 Run in SlowTsk

Axis Control

HMI_I (LD) Control(LD)

Positioning (LD)

Stop (LD)

PLCopen Toolbox Programming Introduction

98

• Use AxisControl for Screw, Rotary, Virtual

Implement AxisControl

The AxisStruct

datatype

already contains

elements for

warnings and

alarms

Notice the “.Ref”

PLCopen Toolbox Programming Introduction

99

• Create the Manual POU
 Run in SlowTsk

Manual POU

HMI_I (LD) Control(LD)

Positioning (LD)

Stop (LD)

Manual (LD)

PLCopen Toolbox Programming Introduction

100

• Implement JOG function block from PLCopen Toolbox

 New Program “Manual”

• Jog Screw

• Jog Virtual Axis

• Initialize AxisStruct elements

Jog Function BlockPLCopen Toolbox Programming Introduction

101

• Create Monitor POU
 Run in FastTsk

Monitor POU

HMI_I (LD) Control(LD)

Positioning (LD)

Monitor (LD)

Stop (LD)

Manual (LD)

PLCopen Toolbox Programming Introduction

102

• Implement ReadAxisParameters

 AxisType is an enumerated type (Right-click Help)

ReadAxisParametersPLCopen Toolbox Programming Introduction

103

• ReadAxisParameters requires Y_Motion Firmware Library

• Insert Y_Motion Firmware Library

ReadAxisParametersPLCopen Toolbox Programming Introduction

104

• View Axis Parameters in Watch Window

 “Parameter” = “feedback data” in PLCopen

ReadAxisParametersPLCopen Toolbox Programming Introduction

105

• ProductBuffer

• MoveRelativeByTime

• PLCopen Toolbox User Library for MotionWorks IEC

 Tutorial Videos Playlist on YouTube Channel

» https://www.youtube.com/playlist?list=PLNAENlyEDCkybLQ25iijwcRAZyG4NGBPb

 Help contains video links

Further HighlightsPLCopen Toolbox Programming Introduction

https://www.youtube.com/playlist?list=PLNAENlyEDCkybLQ25iijwcRAZyG4NGBPb

Driving Value

Homing

Introduction

PLCopen Homing

Supported Function Blocks

Homing State

PLCopen Toolbox Homing

Homing/ZeroPoint Program Investigation

107

What is Homing?

 A repeatable move sequence to move the axis from an unknown position to a known

position

 Executed at every power-up (incremental encoder)

 Executed once when axis is commissioned (absolute encoder)

 Usually done at slow speed

 May involve proximity sensors, encoder reference pulse, hard stops, limit switches,

torque limits

IntroductionHoming

108

• PLCopen Part 5: Homing

 Refer to PDF of PLCopen part 5

 PLCopen defines

» Homing “Procedures”

» Homing “Steps”

• Homing Steps

 There is no one block that would satisfy all homing

requirements

 PLCopen defines the building blocks , or “Steps” of

homing

» Homing function blocks are named MC_StepXxxxx

PLCopen Homing

Two Homing

Steps are

supported in the

MP2000iec

controllers

Homing

109

• MC_StepRefPulse
 PLCopen p.16-17

 C-pulse (Index, Reference)

• MC_StepLimitSwitch
 PLCopen p.11-12

 P-OT, N-OT

• MC_FinishHoming
 PLCopen p.15

• MC_SetPosition
 Current position = any value

Supported Function Blocks

N-OT

Homing

110

• Homing is a State of PLCopen

• Monitor: MC_ReadAxisStatus

Homing StateHoming

111

• Add Home Program POU
 Run in MedTsk

Home POU

HMI_I (LD) Control(LD)

Positioning (LD)

Monitor (LD)

Stop (LD)

Home (LD)Manual (LD)

Homing

112

• Home_Pulse for Rotary

 “HomeStruct” data type for Home Data

PLCopen Toolbox Homing

Use the watch window to find

good values for the data.

Then initialize the structure

elements.

See the Toolbox Help manual

Homing

113

Inside Home_PulseHoming

114

• Simple Zero Set Example (For Screw)

 Arbitrarily set position to zero (visual calibration)

 A one-time “zero set” for absolute encoders

Zero SetHoming

Driving Value

Electronic Gear

Overview

PLCopen Gearing

Gear program POU

Program Example

Program Test

116

• Electronic Gearing

 Motor moves like the output gear – “slave”

 Input gear is another encoder – “master”

» External Encoder

» Servo Axis

» Virtual Axis

 Gear Ratio

» Numerator = Slave Units

» Denominator = Master Units

Overview

Input Gear

(Master)

Output Gear

(Slave)

(Input) tsMaster Uni

(Output) UnitsSlave
GearRatio

External EncoderServo Axis

Electronic Gear

117

• GearIn

 Engages the slave to the master

 If the master is already moving, slave accelerates to speed, then matches position

• GearOut

 Disengages slave from master

 Slave will continue at the previous speed, as if a frictionless system

PLCopen Gearing

Input Gear

(Master)

Output Gear

(Slave)

Electronic Gear

118

• Create Gear (LD) POU
 Run in MedTsk

Class Project #2

HMI_I (LD) Control(LD)

Positioning (LD)

Monitor (LD)

Stop (LD)

Home (LD)

Gear (LD)

Manual (LD)

Electronic Gear

119

Test the program

 Jog the master

 Execute MC_GearIn

» While master is moving

» While master is stopped

 Adjust Ratio

 Observe the InGear output

Program Example Electronic Gear

120

Use the logic analyzer to determine the following

1. What is the difference between executing MC_GearIn when the master is already

moving vs when the master is stopped? Use Logic Analyzer (master speed, slave

speed, InGear)

2. How can the gear ratio be changed without stopping the slave?

3. Under what conditions does the slave disengage and no longer follow the master?

4. Disable execution of MC_Stop. How does this affect operation? Does the slave

remain engaged?

5. Change the master to the virtual axis. What are the advantages and disadvantages?

Program TestElectronic Gear

121

• Master stopped, Gear In, Start Master

• Master Running, Gear In

Logic Analyzer Result #1Electronic Gear

EASY TO
WORK WITH

ENGINEERING EXPERTISE

TECHNOLOGICAL
INNOVATION

1-800-YASKAWA | www.yaskawa.com | training@yaskawa.com

QUALITY
PRODUCT

